

1,3-Dienones and 2*H*-Pyran-2-ones from Soft α -Vinyl Enolization of β -Chlorovinyl Ketones: Defined Roles of Brönsted and Lewis Base

Hun Young Kim and Kyungsoo Oh*

Center for Metareceptome Research, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 156-756, Republic of Korea

ABSTRACT: The eliminative reaction pathways of (E)- β -chlorovinyl ketones were investigated in the presence of both Brönsted and Lewis bases. The Brönsted base, Et₃N, effected the soft α -vinyl enolization of (E)- β -chlorovinyl ketones to [3] cumulenol intermediates; in turn, a catalytic amount of Lewis base, PPh₃, initiated isomerization to provide 1,3-dienones in high yields. The introduction of a carbon-based nucleophile into the reaction mixture provided the highly efficient synthetic route to 2*H*-pyran-2-ones in one pot, where the carbon-based nucleophile generated by an extra equivalent of Brönsted base, Et₃N, attacked the electrophilic [3] cumulenol intermediates to initiate cyclization to give 2*H*-pyran-2-ones.

The development of a chemical species that displays multiple reaction pathways remains one of the primary goals in the field of organic chemistry.¹ The recently demonstrated ambivalent reactivity of β -chlorovinyl ketones has opened up new divergent reaction pathways of $\alpha_{,\beta}$ unsaturated carbonyl compounds beyond the typical nucleophilic addition reactions to enones (Scheme 1).² The fact that the ambivalent reactivity of β -chlorovinyl ketones enables facile access to stereochemically and structurally diverse products strongly suggests that β -chlorovinyl ketones possess high synthetic potential in an integral part of new reaction discovery and development.³ With an aim of utilizing the soft α -vinyl enolization of β -chlorovinyl ketones, we previously investigated the use of a Lewis acid to promote the addition of glycinates to metal [3]cumulenolate intermediate species.^{3b} Motivated by the electrophilic nature of metal [3] cumulenolates from the soft α -vinyl enolization of β -chlorovinyl ketones under Lewis acid conditions, we became interested in the reaction mode of [3] cumulenol intermediates in the absence of a Lewis acid. In this report, we present strong evidence for the electrophilic modes of [3]cumulenol intermediates under Lewis base conditions (or in the presence of a nucleophile).

1,3-Dienones are versatile synthetic intermediates in conjugate addition,⁴ cycloaddition,⁵ and Diels–Alder reactions.⁶ While there are established synthetic methods using the traditional condensation and Wittig reactions,⁷ the develop-

Scheme 1. Soft α -Vinyl Enolization-Induced Janus-like Reactivity of β -Chlorovinyl Ketones

ment of more direct synthetic methods to 1,3-dienones has been the subject of intense investigation. Metal-catalyzed cross-coupling reactions⁸ as well as cross-metathesis approaches

Received:November 12, 2015Published:December 9, 2015

Organic Letters

provide an array of diversely substituted 1,3-dienones.⁹ Moreover, phosphine-catalyzed isomerizations of electronpoor alkynes to 1,3-dienones have been pioneered by Trost¹⁰ and Lu,¹¹ respectively. While the tandem elimination/isomerization of enol triflates under palladium catalysis has been recently disclosed by Frantz,¹² there are no other examples that employ α,β -unsaturated ketones as precursors to 1,3-dienones. Herein, we report a facile one-pot synthesis of 1,3-dienones from the soft α -vinyl enolization of β -chlorovinyl ketones in the presence of both Brönsted and Lewis bases with distinctively defined roles.

To evaluate the compatibility of the Lewis base with the soft α -vinyl enolization conditions of β -chlorovinyl ketones, we investigated the potential use of phosphines as a Lewis base (Table 1). Thus, our previously optimized soft α -vinyl

Table 1. Optimization of 1,3-Dienones from (E)- β -Chlorovinyl Ketones

n-Pr Cl	Et ₃ N (x equiv) PR ₃ (y mol %) solvent (0.2 M) 23 °C, 18 h	Ph	n-Pr +	h + H Ph
(<i>E</i>)-1a		2a	3a	4a
entry	Et_3N , x equiv	PR ₃ , <i>y</i> mol %	solvent	2a , yield ^{a} (%)
1	1.1	PPh ₃ , 10	CH_2Cl_2	2a , 73 ^b
2	1.5	PPh ₃ , 10	CH_2Cl_2	2a , 87
3	1.5	PPh ₃ , 10	THF	2 a, 67 ^b
4	1.5	PPh ₃ , 10	CH ₃ CN	2a , 79
5	1.5	P(ⁿ⁻ Bu) ₃ , 10	CH_2Cl_2	с
6	1.5	PPh ₃ , 5	CH_2Cl_2	2 a, 86
7	1.5	PPh ₃ , 3	CH_2Cl_2	2a , 51 ^d
8		PPh ₃ , 10	CH_2Cl_2	2a , 0

^{*a*}Isolated yield of **2a** after column chromatography. ^{*b*}Unreacted (*E*)-**1a** was recovered. ^{*c*}A 1:2 mixture of **3a** and **4a** was isolated in 90% yield. ^{*d*}The remaining molecular mass balance accounts for a 1:2 mixture of **3a** and **4a**.

enolization of (E)- β -chlorovinyl ketone **1a** was performed in the presence of PPh₂ (10 mol %). To our delight, the formation of 1,3-dienone 2a was obtained in 73% yield with about 80% reaction conversion (entry 1). The use of 1.5 equiv of Et₂N led to the full consumption of 1a, providing 87% yield of 2a (entry 2). Solvents that are suitable mediums for the soft α -vinyl enolization were investigated; however, the reaction in THF led to a lower reactivity (entry 3) and the use of CH₃CN provided a slightly diminished yield of 2a in 79% (entry 4). Interestingly, the use of $P(^{n}Bu)_{3}$ under our reaction conditions did not provide 2a (entry 5).¹³ Lowering the amount of PPh₃ to 5 mol % did not affect the observed yields of 2a, although the employment of 3 mol % did result in a mixture of unreacted propargyl ketone 3a and allenone 4a (entries 6 and 7). The control experiments also confirmed that (E)- β -chlorovinyl ketone 1a did not react with PPh₃ (entry 8).

Scheme 2 shows the generality of our one-pot synthesis of 1,3-dienones from a soft α -vinyl enolization of β -chlorovinyl ketones. The reaction was widely applicable to various substrates (*E*)-1 with electronically as well as sterically diverse substituents (2a-i). The preparation of substituted alkene 2j, α -alkyl-1,3-dienone 2k, and functionalized 1,3-dienones 2l,m was achieved under the optimized reaction conditions. (*E*)- β -Chlorovinyl ketone 1n with a chlorine atom four carbons away from the enone moiety smoothly underwent the desired

 $[^]a\mathrm{PPh}_3$ (10 mol %). $^b\mathrm{PPh}_3$ (50 mol %) at 0 °C for 3 h. <code>^Reaction at 83 °C.</code>

reaction to provide 1,3,5-trienone **2n** in 74% yield. In addition, a substrate **10** with an enolizable ester moiety provided a 1:1 mixture of 1,3-dienone and 1,3-dienyl ester in 85% yield. It should be noted that the current one-pot synthesis of 1,3-dienones from α,β -unsaturated ketones demonstrates the compatibility between a Brönsted base (Et₃N) and a Lewis base (PPh₃) during the reaction.

The defined roles of Brönsted and Lewis bases in the one-opt synthesis of 1,3-dienones strongly imply that a nucleophile could be utilized in the tandem soft α -vinyl enolization and conjugate addition reaction sequence. Thus, based on the p K_a of Et₃N, we investigated the use of methyl cyanoacetate (p K_a 12.8) as a potential nucleophile. Gratifyingly, a simple mixing of (*E*)-1, methyl cyanoacetate 5, and 2 equiv of Et₃N in CH₃CN provided a facile synthetic route to 2*H*-pyran-2-ones 5a–j in 71–85% yields (Scheme 3).¹⁴ At the present time, the one-pot synthesis of 2*H*-pyran-2-ones from (*E*)- β -chlorovinyl ketones is limited to nonenolizable (*E*)-1, possibly due to the competing enolization of an alkyl group.¹⁵

To elucidate the electrophilic species, a mixture of propargyl ketone **3a** and allenone **4a** was treated with PPh₃ (5 mol %) (Scheme 4). A full conversion of the mixture to 1,3-dienone **2a** took 3 h at ambient temperature, while the consumption of **3a** and **4a** could be monitored. Next, we monitored the reaction of (E)- β -chlorovinyl ketone **1a** at several intervals; however, the presence of propargyl ketone **3a** and allenone **4a** could not be confirmed. Our experimental observations suggest that the major pathway to 1,3-dienones from (E)- β -chlorovinyl ketones is likely the result of the PPh₃-catalyzed isomerization of [3] cumulenol species. More experimental support for the

Scheme 4. Involvement of [3]Cumulenol Species during One-Pot Synthesis of 1,3-Dienones and 2H-Pyran-2-ones

involvement of electrophilic [3] cumulenol species was obtained upon using methyl cyanoacetate as a nucleophile. Thus, the treatment of a mixture of propargyl ketone **3a** and allenone **4a** with Et₃N and methyl cyanoacetate resulted in the formation of 2*H*-pyran-2-one **5a** in 38% yield. Similarly, the trisubstituted allenone **4j** failed to undergo the desired cyclization to 2*H*pyran-2-ones even at elevated reaction temperature. The use of (*Z*)-**1a** led to the formation of 1,3-dienone **2a** and 2*H*-pyran-2one **5a** in 20–25% yields within 18 h, corresponding to the kinetics of the soft α -vinyl enolization of (*Z*)-**1a**.²

While the possibility of stepwise reaction pathways, involving the PPh₃-assisted isomerization of allenones 4 to 1,3-dienones or the conjugate addition of methyl cyanoacetate to allenones 4 followed by an intramolecular cyclization to 2*H*-pyran-2-ones, could not be completely ruled out, our data suggested that the major pathways to 1,3-dienones and 2*H*-pyran-2-ones involved the electrophilic [3]cumulenol species, as we observed for the reaction between metal [3]cumulenolates and glycinates (Scheme 5).^{3b} Scheme 5. Major Reaction Pathways in a One-Pot Access to 1,3-Dienones and 2*H*-Pyran-2-ones

In summary, we developed a one-pot synthesis of 1,3dienones and 2*H*-pyran-2-ones from the soft α -vinyl enolization of β -chlorovinyl ketones in the presence of both Brönsted and Lewis bases. Complementary to the electrophilic mode of metal [3]cumulenolate species under Lewis acid conditions, the electrophilic reaction pathway of [3]cumulenol species under Lewis base conditions reinforces the divergent and ambivalent reaction pathways of β -chlorovinyl ketones, paving the way for synthetically useful transformations. We are currently exploring the divergent reaction pathways of β -chlorovinyl ketones using other electrophiles and nucleophiles, and our results will be reported in due course.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.or-glett.5b03265.

Experimental procedures and characterization data for all new compounds (PDF)

AUTHOR INFORMATION

Corresponding Author

*E-mail: kyungsoooh@cau.ac.kr.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (NRF-2015R1A5A1008958).

REFERENCES

(1) Trabocchi, A. Diversity-Oriented Synthesis: Basic and Applications in Organic Synthesis, Drug Discovery, and Chemical Biology; John Wiley & Sons: Hoboken, 2013.

- (2) Kim, H. Y.; Li, J.-Y.; Oh, K. J. Org. Chem. 2012, 77, 11132.
- (3) (a) Kim, H. Y.; Li, J.-Y.; Oh, K. Angew. Chem., Int. Ed. 2013, 52, 3736. (b) Kim, H. Y.; Rooney, E. O.; Meury, R. P.; Oh, K. Angew.

Organic Letters

Chem., Int. Ed. 2013, 52, 8026. (c) Kim, H. Y.; Lee, S.; Kim, S.; Oh, K. Org. Lett. 2015, 17, 450.

(4) For selected recent examples, see: (a) Lu, J.; Ye, J.; Duan, W.-L. Chem. Commun. 2014, 50, 698. (b) Caruana, L.; Kniep, F.; Johansen, T. K.; Poulsen, P. H.; Jørgensen, K. A. J. Am. Chem. Soc. 2014, 136, 15929. (c) Oyaizu, K.; Uraguchi, D.; Ooi, T. Chem. Commun. 2015, 51, 4437. (d) Shaw, S.; White, J. D. Org. Lett. 2015, 17, 4564. (e) Wang, Z.; Kang, T.; Yao, Q.; Ji, J.; Liu, X.; Lin, L.; Feng, X. Chem. - Eur. J. 2015, 21, 7709. (f) Chauhan, P.; Mahajan, S.; Raabe, G.; Enders, D. Chem. Commun. 2015, 51, 2270. (g) Gu, X.; Guo, T.; Dai, Y.; Franchino, A.; Fei, J.; Zou, C.; Dixon, D. J.; Ye, J. Angew. Chem., Int. Ed. 2015, 54, 10249.

(5) Horie, H.; Kurahashi, T.; Matsubara, S. Angew. Chem., Int. Ed. 2011, 50, 8956.

(6) For selected examples, see: (a) Dockendorff, C.; Sahli, S.; Olsen, M.; Milhau, L.; Lautens, M. J. Am. Chem. Soc. 2005, 127, 15028.
(b) Saito, A.; Ono, T.; Hanzawa, Y. J. Org. Chem. 2006, 71, 6437.
(c) Xiong, X.-F.; Zhou, Q.; Gu, J.; Dong, L.; Liu, T.-Y.; Chen, Y.-C. Angew. Chem., Int. Ed. 2012, 51, 4401. (d) Tian, X.; Hofmann, N.; Melchiorre. Angew. Chem., Int. Ed. 2014, 53, 2997.

(7) For reviews, see: (a) Evans, D. A.; Nelson, J. V.; Taber, T. R. Top. Stereochem. 1982, 13, 1. (b) Mukaiyama, T. Org. React. 1982, 28, 203.
(c) Maryanoff, B. E.; Reitz, A. B. Chem. Rev. 1989, 89, 863.

(8) For reviews, see: (a) Stille, J. K. Angew. Chem., Int. Ed. Engl. 1986, 25, 508. (b) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457. (c) Jia, C.; Kitamura, T.; Fujiwara, Y. Acc. Chem. Res. 2001, 34, 633. (d) Negishi, E. Bull. Chem. Soc. Jpn. 2007, 80, 233. (e) Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147. (f) Satoh, T.; Miura, M. Synthesis 2010, 2010, 3395. (g) Le Bras, J.; Muzart, J. Chem. Rev. 2011, 111, 1170.

(9) For examples, see: (a) Moura-Letts, G.; Curran, D. P. Org. Lett. **2007**, *9*, 5. (b) Murelli, R. P.; Snapper, M. L. Org. Lett. **2007**, *9*, 1749.

(10) (a) Trost, B. M.; Schmidt, T. J. Am. Chem. Soc. 1988, 110, 2301.
(b) Trost, B. M.; Kazmaier, U. J. Am. Chem. Soc. 1992, 114, 7933. For a recent contribution, see: (c) Trost, B. M.; Biannic, B. Org. Lett. 2015, 17, 1433.

(11) (a) Ma, D.; Yu, Y.; Lu, X. J. Org. Chem. **1989**, 54, 1105. For a review, see: (b) Kwong, C. K.-W.; Fu, M. Y.; Lam, C. S.-L.; Toy, P. H. Synthesis **2008**, 2008, 2307.

(12) Crouch, I. T.; Dreier, T.; Frantz, D. E. Angew. Chem., Int. Ed. 2011, 50, 6128.

(13) No reaction was observed upon treating a mixture of propargyl ketone and allenone with $P(^{n}Bu)_{3}$ at ambient temperature for 24 h.

(14) The use of 1 equiv Et_3N resulted in an uncompleted reaction with 50–60% conversion.

(15) The use of alkyl-substituted β -chlorovinyl ketones resulted in the formation of propargyl ketone and allenone. No cyclization products **5** were observed.

Letter