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ABSTRACT: The eliminative reaction pathways of (E)-β-chlorovinyl ketones were investigated in the presence of both
Brönsted and Lewis bases. The Brönsted base, Et3N, effected the soft α-vinyl enolization of (E)-β-chlorovinyl ketones to
[3]cumulenol intermediates; in turn, a catalytic amount of Lewis base, PPh3, initiated isomerization to provide 1,3-dienones in
high yields. The introduction of a carbon-based nucleophile into the reaction mixture provided the highly efficient synthetic route
to 2H-pyran-2-ones in one pot, where the carbon-based nucleophile generated by an extra equivalent of Brönsted base, Et3N,
attacked the electrophilic [3]cumulenol intermediates to initiate cyclization to give 2H-pyran-2-ones.

The development of a chemical species that displays
multiple reaction pathways remains one of the primary

goals in the field of organic chemistry.1 The recently
demonstrated ambivalent reactivity of β-chlorovinyl ketones
has opened up new divergent reaction pathways of α,β-
unsaturated carbonyl compounds beyond the typical nucleo-
philic addition reactions to enones (Scheme 1).2 The fact that
the ambivalent reactivity of β-chlorovinyl ketones enables facile
access to stereochemically and structurally diverse products
strongly suggests that β-chlorovinyl ketones possess high
synthetic potential in an integral part of new reaction discovery
and development.3 With an aim of utilizing the soft α-vinyl
enolization of β-chlorovinyl ketones, we previously investigated
the use of a Lewis acid to promote the addition of glycinates to
metal [3]cumulenolate intermediate species.3b Motivated by
the electrophilic nature of metal [3]cumulenolates from the soft
α-vinyl enolization of β-chlorovinyl ketones under Lewis acid
conditions, we became interested in the reaction mode of
[3]cumulenol intermediates in the absence of a Lewis acid. In
this report, we present strong evidence for the electrophilic
modes of [3]cumulenol intermediates under Lewis base
conditions (or in the presence of a nucleophile).
1,3-Dienones are versatile synthetic intermediates in

conjugate addition,4 cycloaddition,5 and Diels−Alder reac-
tions.6 While there are established synthetic methods using the
traditional condensation and Wittig reactions,7 the develop-

ment of more direct synthetic methods to 1,3-dienones has
been the subject of intense investigation. Metal-catalyzed cross-
coupling reactions8 as well as cross-metathesis approaches
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Scheme 1. Soft α-Vinyl Enolization-Induced Janus-like
Reactivity of β-Chlorovinyl Ketones
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provide an array of diversely substituted 1,3-dienones.9

Moreover, phosphine-catalyzed isomerizations of electron-
poor alkynes to 1,3-dienones have been pioneered by Trost10

and Lu,11 respectively. While the tandem elimination/isomer-
ization of enol triflates under palladium catalysis has been
recently disclosed by Frantz,12 there are no other examples that
employ α,β-unsaturated ketones as precursors to 1,3-dienones.
Herein, we report a facile one-pot synthesis of 1,3-dienones
from the soft α-vinyl enolization of β-chlorovinyl ketones in the
presence of both Brönsted and Lewis bases with distinctively
defined roles.
To evaluate the compatibility of the Lewis base with the soft

α-vinyl enolization conditions of β-chlorovinyl ketones, we
investigated the potential use of phosphines as a Lewis base
(Table 1). Thus, our previously optimized soft α-vinyl

enolization of (E)-β-chlorovinyl ketone 1a was performed in
the presence of PPh3 (10 mol %). To our delight, the formation
of 1,3-dienone 2a was obtained in 73% yield with about 80%
reaction conversion (entry 1). The use of 1.5 equiv of Et3N led
to the full consumption of 1a, providing 87% yield of 2a (entry
2). Solvents that are suitable mediums for the soft α-vinyl
enolization were investigated; however, the reaction in THF led
to a lower reactivity (entry 3) and the use of CH3CN provided
a slightly diminished yield of 2a in 79% (entry 4). Interestingly,
the use of P(nBu)3 under our reaction conditions did not
provide 2a (entry 5).13 Lowering the amount of PPh3 to 5 mol
% did not affect the observed yields of 2a, although the
employment of 3 mol % did result in a mixture of unreacted
propargyl ketone 3a and allenone 4a (entries 6 and 7). The
control experiments also confirmed that (E)-β-chlorovinyl
ketone 1a did not react with PPh3 (entry 8).
Scheme 2 shows the generality of our one-pot synthesis of

1,3-dienones from a soft α-vinyl enolization of β-chlorovinyl
ketones. The reaction was widely applicable to various
substrates (E)-1 with electronically as well as sterically diverse
substituents (2a−i). The preparation of substituted alkene 2j,
α-alkyl-1,3-dienone 2k, and functionalized 1,3-dienones 2l,m
was achieved under the optimized reaction conditions. (E)-β-
Chlorovinyl ketone 1n with a chlorine atom four carbons away
from the enone moiety smoothly underwent the desired

reaction to provide 1,3,5-trienone 2n in 74% yield. In addition,
a substrate 1o with an enolizable ester moiety provided a 1:1
mixture of 1,3-dienone and 1,3-dienyl ester in 85% yield. It
should be noted that the current one-pot synthesis of 1,3-
dienones from α,β-unsaturated ketones demonstrates the
compatibility between a Brönsted base (Et3N) and a Lewis
base (PPh3) during the reaction.
The defined roles of Brönsted and Lewis bases in the one-opt

synthesis of 1,3-dienones strongly imply that a nucleophile
could be utilized in the tandem soft α-vinyl enolization and
conjugate addition reaction sequence. Thus, based on the pKa
of Et3N, we investigated the use of methyl cyanoacetate (pKa
12.8) as a potential nucleophile. Gratifyingly, a simple mixing of
(E)-1, methyl cyanoacetate 5, and 2 equiv of Et3N in CH3CN
provided a facile synthetic route to 2H-pyran-2-ones 5a−j in
71−85% yields (Scheme 3).14 At the present time, the one-pot
synthesis of 2H-pyran-2-ones from (E)-β-chlorovinyl ketones is
limited to nonenolizable (E)-1, possibly due to the competing
enolization of an alkyl group.15

To elucidate the electrophilic species, a mixture of propargyl
ketone 3a and allenone 4a was treated with PPh3 (5 mol %)
(Scheme 4). A full conversion of the mixture to 1,3-dienone 2a
took 3 h at ambient temperature, while the consumption of 3a
and 4a could be monitored. Next, we monitored the reaction of
(E)-β-chlorovinyl ketone 1a at several intervals; however, the
presence of propargyl ketone 3a and allenone 4a could not be
confirmed. Our experimental observations suggest that the
major pathway to 1,3-dienones from (E)-β-chlorovinyl ketones
is likely the result of the PPh3-catalyzed isomerization of
[3]cumulenol species. More experimental support for the

Table 1. Optimization of 1,3-Dienones from (E)-β-
Chlorovinyl Ketones

entry Et3N, x equiv PR3, y mol % solvent 2a, yielda (%)

1 1.1 PPh3, 10 CH2Cl2 2a, 73b

2 1.5 PPh3, 10 CH2Cl2 2a, 87
3 1.5 PPh3, 10 THF 2a, 67b

4 1.5 PPh3, 10 CH3CN 2a, 79
5 1.5 P(n‑Bu)3, 10 CH2Cl2 c
6 1.5 PPh3, 5 CH2Cl2 2a, 86
7 1.5 PPh3, 3 CH2Cl2 2a, 51d

8 PPh3, 10 CH2Cl2 2a, 0
aIsolated yield of 2a after column chromatography. bUnreacted (E)-1a
was recovered. cA 1:2 mixture of 3a and 4a was isolated in 90% yield.
dThe remaining molecular mass balance accounts for a 1:2 mixture of
3a and 4a.

Scheme 2. Scope of the One-Pot Synthesis of 1,3-Dienones

aPPh3 (10 mol %).
bPPh3 (50 mol %) at 0 °C for 3 h. cReaction at 83

°C.
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involvement of electrophilic [3]cumulenol species was obtained
upon using methyl cyanoacetate as a nucleophile. Thus, the
treatment of a mixture of propargyl ketone 3a and allenone 4a
with Et3N and methyl cyanoacetate resulted in the formation of
2H-pyran-2-one 5a in 38% yield. Similarly, the trisubstituted
allenone 4j failed to undergo the desired cyclization to 2H-
pyran-2-ones even at elevated reaction temperature. The use of
(Z)-1a led to the formation of 1,3-dienone 2a and 2H-pyran-2-
one 5a in 20−25% yields within 18 h, corresponding to the
kinetics of the soft α-vinyl enolization of (Z)-1a.2

While the possibility of stepwise reaction pathways, involving
the PPh3-assisted isomerization of allenones 4 to 1,3-dienones
or the conjugate addition of methyl cyanoacetate to allenones 4
followed by an intramolecular cyclization to 2H-pyran-2-ones,
could not be completely ruled out, our data suggested that the
major pathways to 1,3-dienones and 2H-pyran-2-ones involved
the electrophilic [3]cumulenol species, as we observed for the
reaction between metal [3]cumulenolates and glycinates
(Scheme 5).3b

In summary, we developed a one-pot synthesis of 1,3-
dienones and 2H-pyran-2-ones from the soft α-vinyl enolization
of β-chlorovinyl ketones in the presence of both Brönsted and
Lewis bases. Complementary to the electrophilic mode of metal
[3]cumulenolate species under Lewis acid conditions, the
electrophilic reaction pathway of [3]cumulenol species under
Lewis base conditions reinforces the divergent and ambivalent
reaction pathways of β-chlorovinyl ketones, paving the way for
synthetically useful transformations. We are currently exploring
the divergent reaction pathways of β-chlorovinyl ketones using
other electrophiles and nucleophiles, and our results will be
reported in due course.
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