

1,3-Dienones and 2H-Pyran-2-ones from Soft α -Vinyl Enolization of β -Chlorovinyl Ketones: Defined Roles of Brönsted and Lewis Base

Hun Young Kim and Kyungsoo Oh*

Center for Metareceptome Research, College [o](#page-2-0)f Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 156-756, Republic of Korea

ABSTRACT: The eliminative reaction pathways of (E) - β -chlorovinyl ketones were investigated in the presence of both Brönsted and Lewis bases. The Brönsted base, Et₃N, effected the soft α -vinyl enolization of (E) - β -chlorovinyl ketones to [3]cumulenol intermediates; in turn, a catalytic amount of Lewis base, PPh₃, initiated isomerization to provide 1,3-dienones in high yields. The introduction of a carbon-based nucleophile into the reaction mixture provided the highly efficient synthetic route to 2H-pyran-2-ones in one pot, where the carbon-based nucleophile generated by an extra equivalent of Brönsted base, $\rm Et_3N$, attacked the electrophilic [3]cumulenol intermediates to initiate cyclization to give 2H-pyran-2-ones.

The development of a chemical species that displays multiple reaction pathways remains one of the primary goals in the field of organic chemistry.¹ The recently demonstrated ambivalent reactivity of β -chlorovinyl ketones h[a](#page-2-0)s opened up new divergent reaction pathways of α , β unsaturated carbonyl compounds beyond the typical nucleophilic addition reactions to enones (Scheme 1).² The fact that the ambivalent reactivity of $β$ -chlorovinyl ketones enables facile access to stereochemically and structurally di[v](#page-2-0)erse products strongly suggests that β -chlorovinyl ketones possess high synthetic potential in an integral part of new reaction discovery and development.³ With an aim of utilizing the soft α -vinyl enolization of β -chlorovinyl ketones, we previously investigated the use of a Lewis [a](#page-2-0)cid to promote the addition of glycinates to metal $[3]$ cumulenolate intermediate species.^{3b} Motivated by the electrophilic nature of metal $\lceil 3 \rceil$ cumulenolates from the soft α-vinyl enolization of $β$ -chlorovinyl ketones [un](#page-2-0)der Lewis acid conditions, we became interested in the reaction mode of [3]cumulenol intermediates in the absence of a Lewis acid. In this report, we present strong evidence for the electrophilic modes of [3]cumulenol intermediates under Lewis base conditions (or in the presence of a nucleophile).

1,3-Dienones are versatile synthetic intermediates in conjugate addition,⁴ cycloaddition,⁵ and Diels-Alder reactions.⁶ While there are established synthetic methods using the traditional condens[at](#page-3-0)ion and Witti[g](#page-3-0) reactions, \bar{z} the developScheme 1. Soft α -Vinyl Enolization-Induced Janus-like Reactivity of $β$ -Chlorovinyl Ketones

ment of more direct synthetic methods to 1,3-dienones has been the subject of intense investigation. Metal-catalyzed crosscoupling reactions⁸ as well as cross-metathesis approaches

Received: Novem[be](#page-3-0)r 12, 2015 Published: December 9, 2015

provide an array of diversely substituted 1,3-dienones.⁹ Moreover, phosphine-catalyzed isomerizations of electronpoor alkynes to 1,3-dienones have been pioneered by $Trost^{10}$ $Trost^{10}$ $Trost^{10}$ and $Lu₁¹¹$ respectively. While the tandem elimination/isomerization of enol triflates under palladium catalysis has be[en](#page-3-0) recentl[y d](#page-3-0)isclosed by Frantz, 12 there are no other examples that employ α , β -unsaturated ketones as precursors to 1,3-dienones. Herein, we report a facile [on](#page-3-0)e-pot synthesis of 1,3-dienones from the soft α -vinyl enolization of β -chlorovinyl ketones in the presence of both Brönsted and Lewis bases with distinctively defined roles.

To evaluate the compatibility of the Lewis base with the soft α-vinyl enolization conditions of β-chlorovinyl ketones, we investigated the potential use of phosphines as a Lewis base (Table 1). Thus, our previously optimized soft α -vinyl

Table 1. Optimization of 1,3-Dienones from (E) - β -Chlorovinyl Ketones

$n-Pr$ CI	$Et2N$ (x equiv) $PR3$ (y mol %) Ph solvent (0.2 M) 23 °C, 18 h	$n-Pr$ Ph	Ph n-Bu	н Ph $+$ n-Bu
(E) -1a		2a	3a	4a
entry	Et_3N , x equiv	PR_3 , y mol %	solvent	$2a$, yield ^{<i>a</i>} (%)
1	1.1	PPh_3 , 10	CH_2Cl_2	$2a, 73^b$
$\overline{2}$	1.5	PPh_3 , 10	CH_2Cl_2	2a, 87
3	1.5	$PPh3$, 10	THF	$2a, 67^b$
$\overline{4}$	1.5	PPh_3 , 10	CH ₃ CN	2a, 79
5	1.5	$P(^{n}Bu)_{3}$, 10	CH ₂ Cl ₂	c
6	1.5	$PPh3$, 5	CH_2Cl_2	2a, 86
7	1.5	PPh_3 , 3	CH_2Cl_2	$2a, 51^d$
8		PPh_3 , 10	CH_2Cl_2	2a, 0

 a Isolated yield of $2a$ after column chromatography. b Unreacted (E)-1a was recovered. ^cA 1:2 mixture of 3a and 4a was isolated in 90% yield. was recovered. ^cA 1:2 mixture of **3a** and **4a** was isolated in 90% yield.
^dThe remaining molecular mass balance accounts for a 1:2 mixture of 3a and 4a.

enolization of (E) - β -chlorovinyl ketone 1a was performed in the presence of PPh_3 (10 mol %). To our delight, the formation of 1,3-dienone 2a was obtained in 73% yield with about 80% reaction conversion (entry 1). The use of 1.5 equiv of $Et₃N$ led to the full consumption of 1a, providing 87% yield of 2a (entry 2). Solvents that are suitable mediums for the soft α -vinyl enolization were investigated; however, the reaction in THF led to a lower reactivity (entry 3) and the use of $CH₃CN$ provided a slightly diminished yield of 2a in 79% (entry 4). Interestingly, the use of $P("Bu)_{3}$ under our reaction conditions did not provide 2a (entry 5).¹³ Lowering the amount of PPh₃ to 5 mol % did not affect the observed yields of 2a, although the employment of 3 m[ol](#page-3-0) % did result in a mixture of unreacted propargyl ketone 3a and allenone 4a (entries 6 and 7). The control experiments also confirmed that (E)-β-chlorovinyl ketone 1a did not react with PPh_3 (entry 8).

Scheme 2 shows the generality of our one-pot synthesis of 1,3-dienones from a soft α-vinyl enolization of β-chlorovinyl ketones. The reaction was widely applicable to various substrates (E) -1 with electronically as well as sterically diverse substituents (2a−i). The preparation of substituted alkene 2j, α -alkyl-1,3-dienone 2k, and functionalized 1,3-dienones 2l,m was achieved under the optimized reaction conditions. (E) - β -Chlorovinyl ketone 1n with a chlorine atom four carbons away from the enone moiety smoothly underwent the desired

Scheme 2. Scope of the One-Pot Synthesis of 1,3-Dienones

 ${}^a{\rm PPh}_3$ (10 mol %). ${}^b{\rm PPh}_3$ (50 mol %) at 0 $^{\circ}{\rm C}$ for 3 h. c Reaction at 83 $^{\circ}C.$

reaction to provide 1,3,5-trienone 2n in 74% yield. In addition, a substrate 1o with an enolizable ester moiety provided a 1:1 mixture of 1,3-dienone and 1,3-dienyl ester in 85% yield. It should be noted that the current one-pot synthesis of 1,3 dienones from α , β -unsaturated ketones demonstrates the compatibility between a Brönsted base (Et_3N) and a Lewis base (PPh_3) during the reaction.

The defined roles of Brönsted and Lewis bases in the one-opt synthesis of 1,3-dienones strongly imply that a nucleophile could be utilized in the tandem soft α -vinyl enolization and conjugate addition reaction sequence. Thus, based on the pK_a of Et₃N, we investigated the use of methyl cyanoacetate (pK_a) 12.8) as a potential nucleophile. Gratifyingly, a simple mixing of (E) -1, methyl cyanoacetate 5, and 2 equiv of Et₃N in CH₃CN provided a facile synthetic route to 2H-pyran-2-ones 5a−j in 71−85% yields (Scheme 3).¹⁴ At the present time, the one-pot synthesis of 2H-pyran-2-ones from (E) - β -chlorovinyl ketones is limited to nonenolizable (E) -1, possibly due to the competing enolization of an alkyl group.¹⁵

To elucidate the electrophilic species, a mixture of propargyl ketone 3a and allenone 4a [was](#page-3-0) treated with PPh₃ (5 mol %) (Scheme 4). A full conversion of the mixture to 1,3-dienone 2a took 3 h at ambient temperature, while the consumption of 3a and 4a could be monitored. Next, we monitored the reaction of (E)-β[-chlor](#page-2-0)ovinyl ketone 1a at several intervals; however, the presence of propargyl ketone 3a and allenone 4a could not be confirmed. Our experimental observations suggest that the major pathway to 1,3-dienones from (E) - β -chlorovinyl ketones is likely the result of the PPh_3 -catalyzed isomerization of [3]cumulenol species. More experimental support for the

involvement of electrophilic [3]cumulenol species was obtained upon using methyl cyanoacetate as a nucleophile. Thus, the treatment of a mixture of propargyl ketone 3a and allenone 4a with $Et₃N$ and methyl cyanoacetate resulted in the formation of 2H-pyran-2-one 5a in 38% yield. Similarly, the trisubstituted allenone 4j failed to undergo the desired cyclization to 2Hpyran-2-ones even at elevated reaction temperature. The use of (Z)-1a led to the formation of 1,3-dienone 2a and 2H-pyran-2 one 5a in 20−25% yields within 18 h, corresponding to the kinetics of the soft α -vinyl enolization of (Z)-1a.²

While the possibility of stepwise reaction pathways, involving the PPh₃-assisted isomerization of allenones 4 to 1,3-dienones or the conjugate addition of methyl cyanoacetate to allenones 4 followed by an intramolecular cyclization to 2H-pyran-2-ones, could not be completely ruled out, our data suggested that the major pathways to 1,3-dienones and 2H-pyran-2-ones involved the electrophilic [3]cumulenol species, as we observed for the reaction between metal [3]cumulenolates and glycinates $(Scheme 5).$ ^{3b}

Scheme 5. Major Reaction Pathways in a One-Pot Access to 1,3-Dienones and 2H-Pyran-2-ones

In summary, we developed a one-pot synthesis of 1,3 dienones and 2H-pyran-2-ones from the soft α -vinyl enolization of β-chlorovinyl ketones in the presence of both Brönsted and Lewis bases. Complementary to the electrophilic mode of metal [3]cumulenolate species under Lewis acid conditions, the electrophilic reaction pathway of [3]cumulenol species under Lewis base conditions reinforces the divergent and ambivalent reaction pathways of β -chlorovinyl ketones, paving the way for synthetically useful transformations. We are currently exploring the divergent reaction pathways of β -chlorovinyl ketones using other electrophiles and nucleophiles, and our results will be reported in due course.

■ ASSOCIATED CONTENT

6 Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.orglett.5b03265.

Experimental procedures and characterization data for all new compounds (PDF)

■ AUTHOR INFORMATION

Corresponding Author

*E-mail: kyungsoooh@cau.ac.kr.

Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (NRF-2015R1A5A1008958).

■ REFERENCES

(1) Trabocchi, A. Diversity-Oriented Synthesis: Basic and Applications in Organic Synthesis, Drug Discovery, and Chemical Biology; John Wiley & Sons: Hoboken, 2013.

- (2) Kim, H. Y.; Li, J.-Y.; Oh, K. J. Org. Chem. 2012, 77, 11132.
- (3) (a) Kim, H. Y.; Li, J.-Y.; Oh, K. Angew. Chem., Int. Ed. 2013, 52, 3736. (b) Kim, H. Y.; Rooney, E. O.; Meury, R. P.; Oh, K. Angew.

(4) For selected recent examples, see: (a) Lu, J.; Ye, J.; Duan, W.-L. Chem. Commun. 2014, 50, 698. (b) Caruana, L.; Kniep, F.; Johansen, T. K.; Poulsen, P. H.; Jørgensen, K. A. J. Am. Chem. Soc. 2014, 136, 15929. (c) Oyaizu, K.; Uraguchi, D.; Ooi, T. Chem. Commun. 2015, 51, 4437. (d) Shaw, S.; White, J. D. Org. Lett. 2015, 17, 4564. (e) Wang, Z.; Kang, T.; Yao, Q.; Ji, J.; Liu, X.; Lin, L.; Feng, X. Chem. - Eur. J. 2015, 21, 7709. (f) Chauhan, P.; Mahajan, S.; Raabe, G.; Enders, D. Chem. Commun. 2015, 51, 2270. (g) Gu, X.; Guo, T.; Dai, Y.; Franchino, A.; Fei, J.; Zou, C.; Dixon, D. J.; Ye, J. Angew. Chem., Int. Ed. 2015, 54, 10249.

(5) Horie, H.; Kurahashi, T.; Matsubara, S. Angew. Chem., Int. Ed. 2011, 50, 8956.

(6) For selected examples, see: (a) Dockendorff, C.; Sahli, S.; Olsen, M.; Milhau, L.; Lautens, M. J. Am. Chem. Soc. 2005, 127, 15028. (b) Saito, A.; Ono, T.; Hanzawa, Y. J. Org. Chem. 2006, 71, 6437. (c) Xiong, X.-F.; Zhou, Q.; Gu, J.; Dong, L.; Liu, T.-Y.; Chen, Y.-C. Angew. Chem., Int. Ed. 2012, 51, 4401. (d) Tian, X.; Hofmann, N.; Melchiorre. Angew. Chem., Int. Ed. 2014, 53, 2997.

(7) For reviews, see: (a) Evans, D. A.; Nelson, J. V.; Taber, T. R. Top. Stereochem. 1982, 13, 1. (b) Mukaiyama, T. Org. React. 1982, 28, 203. (c) Maryanoff, B. E.; Reitz, A. B. Chem. Rev. 1989, 89, 863.

(8) For reviews, see: (a) Stille, J. K. Angew. Chem., Int. Ed. Engl. 1986, 25, 508. (b) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457. (c) Jia, C.; Kitamura, T.; Fujiwara, Y. Acc. Chem. Res. 2001, 34, 633. (d) Negishi, E. Bull. Chem. Soc. Jpn. 2007, 80, 233. (e) Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147. (f) Satoh, T.; Miura, M. Synthesis 2010, 2010, 3395. (g) Le Bras, J.; Muzart, J. Chem. Rev. 2011, 111, 1170.

(9) For examples, see: (a) Moura-Letts, G.; Curran, D. P. Org. Lett. 2007, 9, 5. (b) Murelli, R. P.; Snapper, M. L. Org. Lett. 2007, 9, 1749. (10) (a) Trost, B. M.; Schmidt, T. J. Am. Chem. Soc. 1988, 110, 2301. (b) Trost, B. M.; Kazmaier, U. J. Am. Chem. Soc. 1992, 114, 7933. For

a recent contribution, see: (c) Trost, B. M.; Biannic, B. Org. Lett. 2015, 17, 1433.

(11) (a) Ma, D.; Yu, Y.; Lu, X. J. Org. Chem. 1989, 54, 1105. For a review, see: (b) Kwong, C. K.-W.; Fu, M. Y.; Lam, C. S.-L.; Toy, P. H. Synthesis 2008, 2008, 2307.

(12) Crouch, I. T.; Dreier, T.; Frantz, D. E. Angew. Chem., Int. Ed. 2011, 50, 6128.

(13) No reaction was observed upon treating a mixture of propargyl ketone and allenone with $P("Bu)_3$ at ambient temperature for 24 h.

(14) The use of 1 equiv Et_3N resulted in an uncompleted reaction with 50−60% conversion.

(15) The use of alkyl-substituted β -chlorovinyl ketones resulted in the formation of propargyl ketone and allenone. No cyclization products 5 were observed.